25 research outputs found

    FiliĂšre technologique hybride InGaAs/SiGe pour applications CMOS

    Get PDF
    High-mobility channel materials such as indium-galium-arsenide (InGaAs) and silicon-germanium(SiGe) alloys are considered to be the leading candidates for replacing silicon (Si) in future lowpower complementary metal-oxide-semiconductor (CMOS) circuits. Numerous challenges haveto be tackled in order to turn the high-mobility CMOS concept into an industrial solution. Thisthesis addresses the majors challenges which are the integration of InGaAs on Si, the formationof high-quality gate stacks and self-aligned source and drain (S/D) regions, the optimizationof self-aligned transistors and the co-integration of InGaAs and SiGe into CMOS circuits. Allinvestigated possible solutions are proposed in the framework of very-large-scale integration requirements.Chapter 2 describes two different methods to integrate InGaAs on Si. Chapter 3 detailsthe developments of key process modules for the fabrication of self-aligned InGaAs metal-oxidesemiconductorfield-effect transistors (MOSFETs). Chapter 4 covers the realization of varioustypes of self-aligned MOSFETs towards the improvement of their performance. Finally, chapter5 demonstrates three different methods to make hybrid InGaAs/SiGe CMOS circuits.Les materiaux Ă  forte mobilitĂ© comme l’InGaAs et le SiGe sont considĂ©rĂ©s comme des candidats potentiels pour remplacer le Si dans les circuits CMOS futurs. De nombreux dĂ©fis doivent ĂȘtre surmontĂ©s pour transformer ce concept en rĂ©alitĂ© industrielle. Cette thĂšse couvre les principaux challenges que sont l’intĂ©gration de l’InGaAs sur Si, la formation d’oxydes de grille de qualitĂ©, la rĂ©alisation de rĂ©gions source/drain auto-alignĂ©es de faible rĂ©sistance, l’architecture des transistors ou encore la co-intĂ©gration de ces matĂ©riaux dans un procĂ©dĂ© de fabrication CMOS.Les solutions envisagĂ©es sont proposĂ©es en gardant comme ligne directrice l’applicabilitĂ© des mĂ©thodes pour une production de grande envergure.Le chapitre 2 aborde l’intĂ©gration d’InGaAs sur Si par deux mĂ©thodes diffĂ©rentes. Le chapitre3 dĂ©taille le dĂ©veloppement de modules spĂ©cifiques Ă  la fabrication de transistors auto-alignĂ©s sur InGaAs. Le chapitre 4 couvre la rĂ©alisation de diffĂ©rents types de transistors auto-alignĂ©s sur InGaAs dans le but d’amĂ©liorer leurs performances. Enfin, le chapitre 5 prĂ©sente trois mĂ©thodes diffĂ©rentes pour rĂ©aliser des circuits hybrides CMOS Ă  base d’InGaAs et de SiGe

    Silicon quantum dot devices with a self-aligned second gate layer

    Full text link
    We implement silicon quantum dot devices with two layers of gate electrodes using a self-alignment technique, which allows for ultra-small gate lengths and intrinsically perfect layer-to-layer alignment. In a double quantum dot system, we investigate hole transport and observe current rectification due to Pauli spin blockade. Magnetic field measurements indicate that hole spin relaxation is dominated by spin-orbit interaction, and enable us to determine the effective hole gg-factor ≃1.6\simeq1.6. From an avoided singlet-triplet crossing, occurring at high magnetic field, the spin-orbit coupling strength ≃0.27\simeq0.27meV is obtained, promising fast and all-electrical spin control

    Comprehensive comparison and experimental validation of band-structure calculation methods in III\u2013V semiconductor quantum wells

    Get PDF
    We present and thoroughly compare band-structures computed with density functional theory, tight-binding, k p and non-parabolic effective mass models. Parameter sets for the non-parabolic C, the L and X valleys and intervalley bandgaps are extracted for bulk InAs, GaAs and InGaAs. We then consider quantum-wells with thickness ranging from 3 nm to 10 nm and the bandgap dependence on film thickness is compared with experiments for In0:53Ga0:47As quantum-wells. The impact of the band-structure on the drain current of nanoscale MOSFETs is simulated with ballistic transport models, the results provide a rigorous assessment of III\u2013V semiconductor band structure calculation methods and calibrated band parameters for device simulations

    Hybrid InGaAs/SiGe technology platform for CMOS applications

    No full text
    Les materiaux Ă  forte mobilitĂ© comme l’InGaAs et le SiGe sont considĂ©rĂ©s comme des candidats potentiels pour remplacer le Si dans les circuits CMOS futurs. De nombreux dĂ©fis doivent ĂȘtre surmontĂ©s pour transformer ce concept en rĂ©alitĂ© industrielle. Cette thĂšse couvre les principaux challenges que sont l’intĂ©gration de l’InGaAs sur Si, la formation d’oxydes de grille de qualitĂ©, la rĂ©alisation de rĂ©gions source/drain auto-alignĂ©es de faible rĂ©sistance, l’architecture des transistors ou encore la co-intĂ©gration de ces matĂ©riaux dans un procĂ©dĂ© de fabrication CMOS.Les solutions envisagĂ©es sont proposĂ©es en gardant comme ligne directrice l’applicabilitĂ© des mĂ©thodes pour une production de grande envergure.Le chapitre 2 aborde l’intĂ©gration d’InGaAs sur Si par deux mĂ©thodes diffĂ©rentes. Le chapitre3 dĂ©taille le dĂ©veloppement de modules spĂ©cifiques Ă  la fabrication de transistors auto-alignĂ©s sur InGaAs. Le chapitre 4 couvre la rĂ©alisation de diffĂ©rents types de transistors auto-alignĂ©s sur InGaAs dans le but d’amĂ©liorer leurs performances. Enfin, le chapitre 5 prĂ©sente trois mĂ©thodes diffĂ©rentes pour rĂ©aliser des circuits hybrides CMOS Ă  base d’InGaAs et de SiGe.High-mobility channel materials such as indium-galium-arsenide (InGaAs) and silicon-germanium(SiGe) alloys are considered to be the leading candidates for replacing silicon (Si) in future lowpower complementary metal-oxide-semiconductor (CMOS) circuits. Numerous challenges haveto be tackled in order to turn the high-mobility CMOS concept into an industrial solution. Thisthesis addresses the majors challenges which are the integration of InGaAs on Si, the formationof high-quality gate stacks and self-aligned source and drain (S/D) regions, the optimizationof self-aligned transistors and the co-integration of InGaAs and SiGe into CMOS circuits. Allinvestigated possible solutions are proposed in the framework of very-large-scale integration requirements.Chapter 2 describes two different methods to integrate InGaAs on Si. Chapter 3 detailsthe developments of key process modules for the fabrication of self-aligned InGaAs metal-oxidesemiconductorfield-effect transistors (MOSFETs). Chapter 4 covers the realization of varioustypes of self-aligned MOSFETs towards the improvement of their performance. Finally, chapter5 demonstrates three different methods to make hybrid InGaAs/SiGe CMOS circuits

    Scaling without scaling

    No full text
    Microelectronics is as pervasive as it is invisible. It is however impacting every moment and aspect of our daily lives and has radically transformed all industries. Yet, this adventure began only about 60 years ago, with the first integrated circuits by J. Kilby and R. Noyce
    corecore